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We use precise T-matrix calculations for prolate and oblate spheroids, Chebyshev particles, and spheres
cut by a plane to study the evolution of Lorenz–Mie morphology-dependent resonances �MDRs� with
increasing asphericity of nearly spherical particles in random orientation. We show that, in the case of
spheroids and Chebyshev particles, the deformation of a sphere by as little as one hundredth of a
wavelength essentially annihilates supernarrow MDRs, whereas significantly larger asphericities are
needed to suppress broader resonance features. The MDR position and profile are also affected when the
deviation of the particle shape is increased from that of a perfect sphere. In the case of a sphere cut by
a plane, the supernarrow MDRs are much more resistant to an increase in asphericity and do not change
their position and profile. These findings are consistent with the widely accepted physical interpretation
of the Lorenz–Mie MDRs.

OCIS codes: 290.0290, 290.2200, 290.4020, 290.5850.
1. Introduction

It is well known from the Lorenz–Mie theory that
perfect dielectric spheres exhibit morphology-
dependent resonances �MDRs� at natural frequencies
of oscillation in the form of a high-frequency ripple
structure and supernarrow spikelike features in the
plots of various scattering characteristics versus size
parameter x � 2�a��, where a is the sphere radius
and � is the wavelength in the surrounding
medium.1–3 Although the experimental demonstra-
tion of the Lorenz–Mie ripple structure presents little
technical challenges, measuring the profiles of super-
narrow MDRs �SNMDRs� can be a much more labo-
rious task. However, there have been quite a
number of successful laboratory measurements of the
Lorenz–Mie SNMDRs,3 which poses an interesting
question of how much a real particle can deviate from
an ideal sphere while still exhibiting a Lorenz–Mie
SNMDR. Because nearly spherical particles are un-
likely to have a preferential orientation during the
time necessary to take a measurement in a typical
experimental setting, answering this question re-
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quires precise numerical computations for nonspheri-
cal particles in random orientation. We address this
problem by using the highly accurate and efficient
approach4 based on Waterman’s T-matrix method.5
The main advantage of this approach is that all
orientation-averaged scattering characteristics are
calculated analytically so that the computational ac-
curacy and efficiency are not compromised by a
quadrature scheme for the evaluation of integrals
over the angles specifying the particle orientation
with respect to the laboratory reference frame.

2. Spheroids and Chebyshev Particles

Figures 1–4 summarize the results of the T-matrix
computations for spheres and randomly oriented
nearly spherical spheroids and Chebyshev particles
with a relative refractive index of 1.4 in the range of
size parameters affected by the a38

1 Lorenz–Mie res-
onance.6 We follow the notation introduced in Ref.
7, which implies that a38

1 is the first resonance gen-
erated by the a38 Lorenz–Mie coefficient as x in-
creases from zero. The shape of the spheroids is
characterized by the axis ratio a�b, where b is the
spheroid semiaxis along the axis of rotation and a is
the semiaxis in the perpendicular direction. The
shape of a Chebyshev particle with respect to the
particle reference frame is given by r��� � r0�1 � 	Tn
�cos ��
, where r0 is the radius of the unperturbed
sphere, 	 is the deformation parameter, Tn�cos �� �
cos n� is the Chebyshev polynomial of degree n, and
� is the polar angle. Following Ref. 8, we denote
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Chebyshev particles by the notation Tn�	�. The size
of the spheroids and Chebyshev particles relative to
the wavelength is specified by the size parameter of
the equal-volume sphere. The normalized extinc-
tion is defined as the ratio �Cext����a2�, where �Cext� is
the orientation-averaged extinction cross section and
a is the radius of the equal-volume sphere. The
asymmetry parameter is defined by Eq. �4.41� of Ref.
2. The relative accuracy of the T-matrix computa-
tions was set to be better than 10
10. Furthermore,
we ensured the accuracy of our numbers by using the
extended-precision version of the T-matrix code.2
To precisely depict the profile of the SNMDR, the
T-matrix results were computed with a small size
parameter step size of �x � 0.0003. The inserts in
Figs. 1–4 show the respective particle shapes, al-
though the degree of particle asphericity is grossly
exaggerated for demonstration purposes.

Prolate and oblate spheroids are well suited to
model a simple deformation of the spherical shape
caused by the stretching or flattening of the sphere as
a whole, whereas the Chebyshev particles are a good
model to simulate a small-amplitude high-frequency
ripple �microscopic roughness� on the sphere surface.
It can be seen that both types of deformation have the
same overall effect on the Lorenz–Mie SNMDR.
Specifically, increasing the aspect ratio of the sphe-
roids �the ratio of the largest to the smallest spheroid

semiaxis� and the absolute value of the deformation
parameter 	 of the Chebyshev particles rapidly re-
duces the height of the normalized extinction peak
and the depth of the asymmetry parameter valley.
It is in fact remarkable that the deformation of a
sphere by as little as one hundredth of a wavelength
essentially annihilates the resonance. Secondary
effects of an increase in asphericity are the shift of the
resonance to either smaller or larger size parameters
and the increase of the complexity of resonance struc-
ture, which makes the resonance look like a super-
position of the main and one or more minor
resonances. The latter observation is especially
true of the Chebyshev particles. Interestingly, the
direction in which the resonance is shifted with in-
creasing asphericity is opposite for oblate and prolate
spheroids and for Chebyshev particles with positive
and negative deformation parameters. In fact, the
spheroid curves in Figs. 1 and 2 corresponding to the
same aspect ratios and the Chebyshev particle curves
in Figs. 3 and 4 corresponding to the same �	� look
almost like mirror images of each other.

Figure 5 parallels Fig. 2, but shows the results for
a much wider range of size parameters and captures
three SNMDRs as well as broader resonance fea-
tures. It is obvious that it takes significantly larger
asphericities to suppress the broader MDRs.

An interesting feature of the curve for a�b � 0.9 in
Fig. 5 is the minute high-frequency ripple superposed
on a slowly and weakly varying background. This

Fig. 1. T-matrix computations of the normalized extinction and
asymmetry parameter for spheres and equal-volume oblate sphe-
roids in random orientation in the neighborhood of the a38

1

Lorenz–Mie resonance.

Fig. 2. As in Fig. 1, but for prolate spheroids.
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ripple is absent in the curves for the nearly spherical
spheroids and is the contribution of additional natu-
ral frequencies of oscillation of distinctly aspherical
spheroids with specific orientations relative to the
incident beam. This effect is demonstrated in Fig. 6,
which shows the normalized extinction Cext������a2�
as a function of the equal-volume-sphere size param-
eter and the orientation angle � �the angle between
the spheroid axis and the incidence direction� for pro-
late spheroids with a�b � 0.9. The incident light is
assumed to be unpolarized. The overall increase of
the extinction cross section Cext with increasing � is
explained by the growing area of the spheroid geo-
metric projection on the plane perpendicular to the
incidence direction.

3. Spheres Cut by a Plane

One trait that spheroids and Chebyshev particles
have in common is that even a minute deviation of
the axis ratio a�b from unity or of the deformation
parameter 	 from zero distorts the entire particle
surface. It would be interesting, therefore, to ana-
lyze the behavior of a SNMDR for nearly spherical
particles obtained by distortion of only a small frac-
tion of the surface of a perfect sphere. A good exam-
ple of such particles are spheres cut by a plane
�SCBP; Fig. 7�. Such scatterers are bodies of revo-
lution and as such can be efficiently handled by the
T-matrix method. One should take into account,
however, that SCBP are particles with piecewise

smooth surfaces and require the application of a sep-
arate quadrature formula to each smooth part in the
computation of the integrals in Eqs. �5.196�–�5.199� of
Ref. 2 �compare with Refs. 9 and 10�. Furthermore,
the presence of a relatively sharp transition from the
spherical to the plane surface of SCBP slows down
the convergence rate of the T-matrix computations.
Therefore we had to relax the relative computational
accuracy to 10
5.

It is convenient to characterize the shape of SCBP
in terms of the asphericity parameter e � �l 
 a��a,
where a is the radius of the unperturbed sphere and
l is the particle linear dimension along the rotation
axis �Fig. 7�. For example, the value e � 1 corre-
sponds to a perfect sphere, whereas e � 0 yields a
hemisphere.

Figure 8 is analogous to Figs. 1–4 but shows the
results of T-matrix computations for SCBP with
three increasing values of the asphericity parameter.
One can see that now it takes a much larger degree of
asphericity to suppress the supernarrow resonance
than in the case of either spheroids or Chebyshev
particles. Another striking difference is that now
the position of the SNMDR remains exactly the same
irrespective of the specific value of e.

4. Discussion

We hope that our findings will be taken into account
and eventually reproduced by analytical and semiana-
lytical theories intended to give a simplified quantita-

Fig. 3. As in Fig. 1, but for Chebyshev particles. Fig. 4. As in Fig. 1, but for Chebyshev particles.
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tive description of the resonance phenomenon.1,3,11,12

However, the fact that global surface deformations of a
sphere as small as ��100 have a profound effect on the
Lorenz–Mie SNMDRs and that significantly greater
surface deformations are needed to suppress the
broader MDRs appears to be consistent with the tra-
ditional physical interpretation of the MDRs as that of
a situation in which rays propagate around the inside
surface of a sphere, confined by an almost total inter-
nal reflection.1 After circumnavigating the sphere,
the rays return to their respective entrance points ex-
actly in phase and then follow the same path all over
again without being attenuated by destructive inter-
ference. A global deformation of the sphere surface
changes the phases of the rays and facilitates destruc-
tive interference, thereby suppressing the resonance.
Because the width of a resonance is inversely propor-
tional to the internal path length of the rays,13 the

SNMDRs suffer much stronger from the rapidly accu-
mulating phase changes and are much more sensitive
to increasing surface deformations than the broader
MDRs. The traditional interpretation of the MDRs is
also supported by our T-matrix results for SCBP. In
this case, the spherical part of the particle surface
remains significant even for rather small values of e
and can still support the majority of the internal ray
trajectories causing the SNMDR. Furthermore, the
position of the resonance remains exactly the same
because the radius of curvature does not change.

Another important result of this study is that it
allows one to estimate the upper limit on the possible
deviation of the particle shape from the perfect
sphere in experiments like the one described in Ref.
14 and involving measurements of light scattering by
a levitated, gradually evaporating liquid droplet. It
seems obvious that nearly spherical spheroids or

Fig. 5. As in Fig. 2, but for a wider range of size parameters. The data were computed with a size parameter step size of 0.0005.

5554 APPLIED OPTICS � Vol. 42, No. 27 � 20 September 2003



Chebyshev particles afford a much more adequate
model of natural deformations of a liquid droplet than
SCBP. Therefore the fact that those experiments
were successful in the detection of Lorenz–Mie
SNMDRs implies that the scattering particles must
have been extremely close to ideal spheres.

Our final comment is intended to emphasize the

Fig. 6. Normalized extinction versus volume-equivalent-sphere size parameter and orientation angle for prolate spheroids with a relative
refractive index of 1.4 and an axis ratio of a�b � 0.9. The data were computed with a size parameter step size of 0.00025 and an
orientation angle step size of 0.5°.

Fig. 7. Sphere cut by a plane. Fig. 8. As in Fig. 1, but for SCBP.
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decisive importance of the T-matrix method for this
study. Indeed, the extreme sensitivity of the
SNMDRs to surface deformations as small as ��100
makes it essentially impossible to perform a study
such as this one with finite-element and volume-
integral equation techniques, which traditionally use
a much coarser discretization of the particle interior
and surface �e.g., Refs. 15 and 16 and references
therein�.
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